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Solution 7

1. Determine whether Z and Q are complete sets in R.

Solution. Z is a closed subset so it is complete. On the other hand, the closure of Q is
R, it is not complete.

2. Does the collection of all differentiable functions on [a, b] form a complete set in C[a, b] ?

Solution. No. Since C[a, b] is complete, it suffices to show that the set of differentiable
functions is not closed. But this is easy, I leave you to verify the sequence of differentiable
functions fn(x) = (1/n + x2)1/2 in C[−1, 1] converges uniformly to the non-differentiable
function f(x) = |x|.

3. Let (X, d) be a metric space and Cb(X) the vector space of all bounded, continuous
functions in X. Show that it forms a complete metric space under the sup-norm. This
problem will be used in the next problem.

Solution. Let {fn} be a Cauchy sequence in Cb(X). For ε > 0, there exists n1 such that

|fn(x)− fm(x)| ≤ ‖fn − fm‖∞ < ε, ∀x ∈ X. (1)

It shows that {fn(x)} is a numerical Cauchy sequence, so limn→∞ fn(x) exists. We define
f(x) = limn→∞ fn(x). We check it is continuous at x0 as follows. By passing m → ∞ in
(1), we have

|f(x)−f(x0)| ≤ |f(x)−fn1(x)|+|fn1(x)−fn1(x0)|+|fn1(x0)−f(x0)| ≤ 2ε+|fn1(x)−fn1(x0)|.

As fn1 is continuous, there is some δ such that |fn1(x) − fn1(x0)| < ε for x ∈ Bδ(x0). It
follows that we |f(x)− f(x0)| < 3ε for x ∈ Bδ(x0), so f is continuous at x0. Now, letting
m→∞ in (1), we get |fn(x)−f(x)| ≤ ε for all n ≥ n1, so fn → f uniformly. In particular,
it means f is bounded.

4. We define a metric on N, the set of all natural numbers by setting

d(n,m) =

∣∣∣∣ 1n − 1

m

∣∣∣∣ .
(a) Show that it is not a complete metric.

(b) Describe how to make it complete by adding one new point.

Solution. The sequence {n} is a Cauchy sequence in this metric but it has no limit. Its
completion is obtained by adding an ideal point called∞ and define d̃(x, y) = d(x, y) when
x, y ∈ Z and d̃(x,∞) = 0 for all x ∈ Z or ∞.

5. Optional. Let (X, d) be a metric space. Fixing a point p ∈ X, for each x define a function

fx(z) = d(z, x)− d(z, p).

(a) Show that each fx is a bounded, uniformly continuous function in X.

(b) Show that the map x 7→ fx is an isometric embedding of (X, d) to Cb(X) (shorthand
for Cb(X,R)) . In other words,

‖fx − fy‖∞ = d(x, y), ∀x, y ∈ X.

(c) Deduce from (b) the completion theorem.
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This approach is much shorter than the proof given in notes. However, it is not so inspiring.

Solution.

(a) From |fx(z)| = |d(z, x) − d(z, p)| ≤ d(x, p), and from |fx(z) − fx(z′)| ≤ |d(z, x) −
d(z′, x)|+ |d(z′, p)−d(z, p)| ≤ 2d(z, z′), it follows that each fx is a bounded, uniformly
continuous function in X.

(b) |fx(z)− fy(z)| = |d(z, x)− d(z, y)| ≤ d(x, y), and equality holds taking z = x. Hence

‖fx − fy‖∞ = d(x, y), ∀x, y ∈ X.

(c) Let Y0 = {fx : x ∈ X} ⊂ Cb(X). Let Y be the closure of Y0 in the complete metric
space (Cb(X), ρ) with sup-norm ρ. Then (Y, ρ) is a completion of (X, d).

6. Let f : E → Y be a uniformly continuous map where E ⊂ X and X,Y are metric spaces.
Suppose that Y is complete. Show that there exists a uniformly continuous map F from
E to Y satisfying F = f in E. In other words, f can be extended to the closure of E
preserving uniform continuity.

Solution. Let x ∈ ∂E. There exists {xn} ⊂ E, xn → x. Since {xn} is a Cauchy sequence,
by uniformly continuity {f(xn)} is also a Cauchy sequence in Y . As Y is complete, {f(xn)}
converges to some point in Y . Therefore, we can define F (x) = limn→∞ f(xn). It remains
to show this definition is independent of the sequence {xn}. Indeed, let {yn}, yn → x.
We claim limn→∞ f(yn) = limn→∞ f(xn). It suffices to set z2n+1 = xn when n is odd
and z2n = yn to form a new sequence {zn}. This sequence again is a Cauchy sequence,
so {f(zn)} is convergent. As both {xn} and {yn} are subsequences of it, {f(xn)} and
{f(yn)} tend to the same limit. Now, it is clear that the new function F extends f and is
uniformly continuous on the closure of E.

Note. We have used this property in the proof of Theorem 3.4. Observe that a contraction
is always uniformly continuous.

7. Consider maps from R to itself. Provide explicit examples of continuous maps with exactly
one, two and three fixed, and one map satisfying |f(x)−f(y)| < |x−y| but no fixed points.

Solution. Let f be our function. We consider g(x) = f(x) − x. It suffices to produce
examples with exactly one, two and three roots. For instance, g1(x) = −x has exactly
one root. g2(x) = x2 − 1 has exactly two roots. g3(x) = (x − 1)(x − 2)(x − 3) has ex-
actly three roots. The corresponding f1, f2, f3 fulfil our requirement. Finally, the function
f(x) = x+ log(1 + e−x) does not have any fixed point.

8. Let T be a continuous map on the complete metric space X. Suppose that for some k,
T k becomes a contraction. Show that T admits a unique fixed point. This generalizes the
contraction mapping principle in the case k = 1.

Solution. Since T k is a contraction, there is a unique fixed point x ∈ X such that
T kx = x. Then T k+1x = T kTx = Tx shows that Tx is also a fixed point of T k. From the
uniqueness of fixed point we conclude Tx = x, that is, x is a fixed point for T . Uniqueness
is clear since any fixed point of T is also a fixed point of T k.

9. Show that the equation 2x sinx− x4 + x = 0.001 has a root near x = 0.
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Solution. Here Ψ(x) = 2x sinx − x4. We need to find some r, γ so it is a contraction.
We have

|Ψ(x1)−Ψ(x2)| =
∣∣2x1(sinx1 − sinx2) + 2(x1 − x2) sinx2 − (x41 − x42)

∣∣
=

∣∣2x1 cos c(x1 − x2) + 2(x1 − x2) sinx2 − (x21 + x22)(x1 + x2)(x1 − x2)
∣∣

≤ (2r + r + (2r2)(2r))|x1 − x2| .

Taking r = 1/4, γ = 2r + r + (2r2)(2r) = 13/16 < 1. By the Perturbation of Identity
Theorem, the equation 2x sinx − x4 + x = y is solvable for any y satisfying |y| ≤ R =
(1− γ)r = 0.0468, including y = 0.001.

10. Can you solve the system of equations

x+ y4 = 0, y − x2 = 0.015 ?

Solution. Here we work on R2 and Φ(x, y) = (x, y) + Ψ(x, y) where Ψ(x, y) = (−y4, x2).
In the following points in R2 are denoted by p = (x1, y1), q = (x2, y2), etc.

‖Ψ(p)−Ψ(q)‖2 = ‖(−y41 + y42, x
2
1 − x22)‖2

= ‖((y21 + y22)(y1 + y2)(y2 − y1), (x1 + x2)(x1 − x2)‖2
≤

√
(2r2 × 2r)2 + (2r)2‖p− q‖2

= 2r(1 + 4r2)‖p− q‖2 .

(We have used |x1 − x2|, |y1 − y2| ≤ ‖p − q‖2.) Hence by taking r = 1/4, γ = 5/8 and
R = 3/24 = 0.125. As 0.015 < 0.125, the system is solvable.

11. Can you solve the system of equations

x+ y − x2 = 0, x− y + xy sin y = −0.005 ?

Solution. First we rewrite the system in the form of I + Ψ. Indeed, by adding up and
subtracting the equations, we see that the system is equivalent to

x+ (−x2 + xy sin y)/2 = −0.0025, y + (−x2 − xy sin y)/2 = 0.0025 .

Now we can take

Ψ(x, y) =
1

2
(−x2 + xy sin y,−x2 − xy sin y) ,

and proceed as in the previous problem.


